Plasma-Assisted Atomic Layer Deposition of High-Density Ni Nanoparticles for Amorphous In-Ga-Zn-O Thin Film Transistor Memory
نویسندگان
چکیده
For the first time, the growth of Ni nanoparticles (NPs) was explored by plasma-assisted atomic layer deposition (ALD) technique using NiCp2 and NH3 precursors. Influences of substrate temperature and deposition cycles on ALD Ni NPs were studied by field emission scanning electron microscope and X-ray photoelectron spectroscopy. By optimizing the process parameters, high-density and uniform Ni NPs were achieved in the case of 280 °C substrate temperature and 50 deposition cycles, exhibiting a density of ~1.5 × 1012 cm-2 and a small size of 3~4 nm. Further, the above Ni NPs were used as charge storage medium of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistor (TFT) memory, demonstrating a high storage capacity for electrons. In particular, the nonvolatile memory exhibited an excellent programming characteristic, e.g., a large threshold voltage shift of 8.03 V was obtained after being programmed at 17 V for 5 ms.
منابع مشابه
High performance InGaZnO thin film transistor with InGaZnO source and drain electrodes
Articles you may be interested in Mobility enhancement in amorphous InGaZnO thin-film transistors by Ar plasma treatment Appl. Correlation of photoconductivity response of amorphous In–Ga–Zn–O films with transistor performance using microwave photoconductivity decay method Appl. Fully transparent InGaZnO thin film transistors using indium tin oxide/graphene multilayer as source/drain electrodes...
متن کاملTop Gate Amorphous In−Ga−Zn−O Thin Film Transistors Fabricated on Soda−Lime−Silica Glass Substrates
This work presents a comparative analysis of top gate a-IGZO TFTs fabricated on both soda-lime-silica glass and alkali-free borosilicate glass. Low-temperature ALD is selected for the deposition of gate dielectric to minimize a thermal stress. Comparing with TFTs on alkali-free borosilicate glass, TFTs with soda-lime-glass show similar threshold voltage and subthreshold swing, but slightly degr...
متن کاملHigh mobility In[subscript 0.53]Ga[subscript 0.47]As quantum-well metal oxide semiconductor field effect transistor structures Citation
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Complementary metal–oxide–semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring reso...
متن کاملMetallization strategies for In2O3-based amorphous oxide semiconductor materials
Amorphous oxide semiconductors based on indium oxide [e.g., In–Zn–O (IZO) and In–Ga–Zn–O (IGZO)] are of interest for use in thin-film transistor (TFT) applications. We report that the stability of amorphous In–Zn–O (a-IZO) used in TFT applications depends, in part, on the metallization materials used to form the source and drain contacts. A thermodynamics-based approach to the selection of IZO ...
متن کاملProcess Optimization of Deposition Conditions for Low Temperature Thin Film Insulators used in Thin Film Transistors Displays
Deposition process for thin insulator used in polysilicon gate dielectric of thin film transistors are optimized. Silane and N2O plasma are used to form SiO2 layers at temperatures below 150 ºC. The deposition conditions as well as system operating parameters such as pressure, temperature, gas flow ratios, total flow rate and plasma power are also studied and their effects are discussed. The p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017